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PLANE CONTACT PROBLEMS FOR A PHYSICALLY NON-LINEAR PRESTRESSED ELASTIC MEDIUM* 

I.V. VOROTYNTSEVA 

The framework of the physically non-linear theory of elasticity is used 

to formulate and solve plane contact problems for a half-plane and a 

strip of finite depth, prestressed by the action of longitudinal, uniformly 

distributed forces applied at infinity. The cases of loss of stability 

in the medium induced by prestressing are studied and the influence of the 

prestressing mode on the magnitude of the contact pressures is investigated. 

1. The resolving equations of the physically non-linear (geometrically linear) theory 

of elasticity can be written for the case of plane deformation, provided that there are no 

mass forces, in the form /l/ 

?2+!$&,, !$J+_!&l) 0.1) 

s.r=WX+((P-$)U, e,=Wu+((P-$)U, a,=0 

E W - -Wry, s=cpa, $+$+2& 

(J= 
~y+~y+~r 

3 ’ T = + [(a, - nu)* + (al - u,)* + (q, - u$ + 6&,]“~ 

Here 1/(2$) is the reduced shear modulus, licp is the reduced volume deformation modulus 

and the functions $ =?#(I U 1, z), cp = m(Ia 1, T) are continuous, monotonic and positive with 

respect to both their arguments. 
The initial stress state of the medium is given as follows: 

(1.2) 

Then, according to (1.1) the initial deformations have the form 

e*o=+ J1”(lli”+2@) p, - w+cp” 
E a=* rp”(cp”-w p, E* _. 

II 
- w++” XY - 

We further write u, = UQ + ux*, . . .; E, = .s,O + ex*, . . .; s = uO+ u*,...; u = cr" + u*, 7 = 

7°+7*,~=~o-~*,cp=cp0-cp*where ~*=~~~~1U*I+&"'7*,cp*=~~olo)lU*I +cp,"'7*,cp"=cp(~Uo), 

7"),q" = $((IU"I,7'), where the symbols with asterisks denote small perturbations in the basic 

stress, defromation and displacement fields. Linearizing Eqs.Cl.1) with respect to these 

perturbations, we obtain /2/ 

~+!+, a;$ 1 y -0 (1.3) 

e,* = 5 (Lla,* + Nauu*), q/* = * (Nlu** + L*u”*) 

eiry = fTT, 

Lli= I+ 2n +h,(m~,n~)& +hk(h,L)Tk 

Nk=n-_++h9-k(ml,mz)~:k+h,-k(11,zI)T~, k=1,2 

hl (ml, ma) = [2 (n” + n + 1) ml + 3mJ (n + 2)-l 

hz (ml, ms) = [(n* - 2n - 2) ml + 3mBJ (n + 2)-l 

&=A-‘[21/l+n+ I2 2 - s (4 - I,)] 

T1=A-1[-2(i+n+,t2)+-$$tf(nm~-m~)] 
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&=A-l[2J'-l+nt 

TacA-l[-((nP-22n-2)f~(nm~--mr)] 

A=2(n+-2)~1+nf~~'- 

-[3n(dl--h)+2y'l i-n + ns(fm-m)Jin -I-21-l 

Here we have introduced the dimensionless quantities n,m,,m,, II,& characterizing 
mechanical properties of the material of the medium in question, which take into account 
prestressed mode. We also have 

Let us introduce the Airy stress function 

the 

the 

Then Eq.(1.4) of the compatibility of deformations a,*, a,*, E,,* can be written, using 
Eqs. (1.51, in the form 

Ac h+Ns+2(n+2), B+ 
2Ll 

The conditions that Eq. (1.61 be elliptic have the form 

a) A*-B<O, b)A >O,B>O,A'>B (1.7) 

the 

a) 

Let us write these conditions of ellipticity, as an example, for some special cases of 
functions tp (1 (T 1, t), ‘p = (1 0 1, 7). 

lo ~;))tp~)~q;; andwe have n=mX=m,=t,=O,l,=t#O. Then the equation is elliptic if 

< 0, 
20 cp =$(I 0.1 T), cp = o and we have n= m,= b= 0, ll=Z#O,m, = m+O. Eq.(1.6) is elliptic if 

8) E<- RI% (1 nr I< a~), b)- m%< I < 2 - 1 m [ (I m I< 4) W) 

The shaded area in Fig.1 shows the domain of ellipticity for this case. It should be noted, 

noted, that if v(lol,t) is a homogeneous function of its arguments, then the elliptic character 
of the equation does not depend on the initial stress of the medium and is determined by the 
structure of th; function @. 

3O 9=+(r). cp = con&, and we have m1 = m, = &= 0, i1 = I#O, n#O- Eq.(1.6) will be elliptic, 
provided that 

a) l< 0, I> Jf, b> --‘I,); 0 < I< MI b < -1/J 
b) Z<M,(s<--2);M,<1<M,, l>M,(--2<n(-1.22) 

Ma < I<0 (-1.22 <n < -'/*,; 0 < I< a@, (n> -'/*) 

Md(i + 2n)< l< M, (n > 2.73) 

(1.9) 

M =2++ 2),1/1$-n +ns, M* = M/(3n') 

M(f+24 M(1f24 
~~-3na(t~Zn)+(na-2n-2)$, ~s=3nB(i+2n)3_4(i+n+n',' 

Fig.3 
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From (1.9! it follows that the critical values of m and 1 satisfy the equations 

1 = 0, I = M, (--1.22 < n < 2.73); 2 = M,, 1 = Ma (1 n 1 < cm) 

The shaded areas in Fig.2 show the domains in which (1.6) is elliptic, corresponding to 
the case in question. 

From the mechanical point of view, the cases in which (1.6) ceases to be elliptic can be 
treated as the cases in which the medium loses its internal stability as a result of the pre- 
stressing /3/. 

2. Let us now consider the contact problem. Let a strip occupying the region O<y,(h, 
made of material obeying the relations (1.31, lie without friction on a rigid support. A rigid 
rectangular stamp (Fig.31 is impressed into the boundary of the strip y =h by a force P 

whose eccentricity of application is e. We shall assume that the frictional forces in the 
area of contact between the stamp and the strip axe small and can be neglected, and the width 
2s of the area of contact is independent of the magnitude of the force applied. We will 
regard the action of the stamp on the strip as a small perturbation in the basic stress field 
(1.2). 

Let us write the boundary conditions for this contact problem 

rzlw* (r, 0) = 0, v* (5, 0) = 0, TX@* (5, h) = 0 (I 5 1 < Q3) (23) 
v* (r, h) = -(6 + as - f (2)) (I 35 I < a), uy* et h) = 0 (I f I > a) 

We must supplement these conditions with the demand that the stresses (additional with 
respect to the initial stress field) vanish at infinity. Here 6 is the translational dis- 
placement of the stamp along the axis y, a is the angle of rotation of the stamp about the 
axis z, f(x) is a function describing the form of the stamp foundation. 

In order to construct the solution of the boundary value problem formulated above, we 
will apply the integral Fourier transform in the variable I to Eq.cl.6) in the region where 
it is elliptic, i.e. we shall seek the Airy function in the form 

Q,(s, y)= j G(o, y)eios do (2.2) 
-m 

Here Eq.fl.6) leads to an ordinary differential equation fortheinverse Fourier transform 

3 (0, Y) whose solution is given by the formula 

~(o,~)=C~+(o)shwx+y +Cz+(o)chox+y-+ Cl-(o)sh~q/ +G-(o)chw~ (2.3) 

4 A2<B, Xf=c+_tic_, 
c*---' ( A*;"* )"' 

b) A > 0, B >O, A2 > B, xk = IA f (AZ - B)'~.l'/* 

we further introduce the function of contact pressure distribution 

sy* (5, h) = - p(z), 12 1 < a (2.41 

and, assuming forthetime being, that it is known, we apply the integral Fourier transform 
(2.2) to the first three boundary conditions from (2.1), and to (2.4). Next, having satisfied 
the transformed boundary conditions with help of Eqs.(2.3), we obtain (the additional stresses 
vanish as 15 t+ca by virtue of the properties of Fourier integrals) 

Cl*(o)=O, C,*(~)=+Q(~~)CPX~ shw@x (2.5) 

[x+shox+hchwx_h-X_ shox_hchwx+h]-l 

Q(w)=& { q(s}e-‘O”dX 
--D 

[where (Q(o) is the inverse Fourier transform of the contact pressure distribution function). 
Using the results obtained we can write the following expression for determining the settling 
under the stamp 

v*(x,h)=+ )m K(+% 

Further, by satisfying the last boundary condition of (2.11, we reduce the contact problem 
in question to an integral equation of the first kind in P (3) 

!4(E)K(+j dg=no(F-+-as-~((2)), /Xl\<1 (2.7) 
--I 
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L(o)=c_ ch2c+o-ccos2c_o e-n+2 c+x fc ' 
c_sh2c+o +c+sinZc_o ’ L2 2c, 

L (0) = 
x+--x_ 0= n+2 x+x_ 

x+cthox_-X_clllox+ ’ 7- 2 x+ + x- 

In relations (2.6), (2.7) h = h/a is a dimensionless parameter characterizing the strip 
thickness, and x, 5, Q are dimensionless variables. It should be noted that as h-too, the 
integral equation fortheprestressed, physically non-linear strip (2.7) will be transformed 
into an integral equation of the corresponding contact problem for a prestressed, physically 
non-linear elastic half-plane 

(2.5) 

Here the constant C is infinite. When the strip is very thick, the contact problem can 
/4/ also be reduced to integral Eq.(2.8), but the value of the constant C will be finite. 
The parameter 6 represents an important characteristic of the problem for a half-plane, and 
in this case we can call this parameter the contact rigidity (CR). 

Below we give the results of an investigation of the CR for some special cases of the 
function 'p,*. 

lo @ = Q (r), cp = 0. We have 6 = (1 - l,'2)-'I*. In the domain of ellipticity (-oo<<l<O, O< 1<2) 
I3 takes real positive values and never vanishes. The dashed line in Fig.1 shows the dependence 
of CR on the degree m of prestressing of the medium. The cases when CR becomes infinite can 
be treated as cases of the loss of surface deformability of the medium caused by prestressing. 
The loss of surface deformability and the loss of internal stability occur simultaneously 
during the passage through the point 1= 2. 

2O $=$(lol.~),cp = 0. We have 

a) e = 2 (2/p)"*, p = (2 - m - 1) 12 + 2 + ((2 - 2)' - m+j 

b) 8 =4/p, p = (2 -m - 2)". [2 + 1 -j- (m* + 82)'/* + (2 + I - (m* + 8Z)"')"'] 

As before, 8 is real and positive in the region of variation of the parameters m and 1 
(1.8) where Eq.(1.6) is elliptic. Outside this region Q is complex. On the segment of the 
contour on which I= 2+ m(-4<m<O) 8 ispositive , and on the rest of the contour I= 2-m(O< 
m<4), l= ---ma/8 (m>4)it becomes infinite, i.e. we have the loss of surface deformability of 
the medium. Here, as in lo, a loss of surface deformability and a loss of integral stability 
occur simultaneously. 

30 $ = (I)(T), cp = const. We have Q = N (n + 2)/p and 

a) p = s'/. (S, + (SS,)"')"' 

b) p =x (rS)y' [(xS, + (n + 2)'((4 + 2n) IN)'+ + (xS,- (n + 2)* ((1 + 2n)lN)li+] 

Here 
N = M - 3nal, S = (i + 2n)M - 13n'(1 + 2n) + (n* - 2% - 2)] 2 
S, = (1 + 2n) M - f3n* (1 + 2n) - 2 (1 + n + ne)(na - 2n - 2)] 1 
S, = (1 + 2n) M - 13ns (4 + 2n) + 4 (i + n + n2)*] 1 

1 

-4 in regions 4,6,8 
'= 

(Fig.2) 
$1 in regions 5,7,9 (Fig.2) 

Unlike Examples lo and '2O , in the region of variation of the parameters n and 1 of the 
form (1.9), where (1.6) is elliptic, 8 can be positive as well as negative. The regions in 
Fig.2 marked 4, 6, 7, 9, must be excluded from the discussion, since the negative value of CR 
contradicts the physical meaning of the problem. It is interesting to note that the regions 
in question are bounded by contours, passage through which is accompanied either by a loss of 
surface deformability ofthemedium (Q= CO), or by a loss of surface stability of the medium 
(e = 0) occurring simultaneously with a loss of internal stability of the medium caused by 
prestressing. The CR becomes infinite during the passage across the contours 1= O(n<--'i*),Z= 
MS (n E (- m, -1:22) \ 2). IZ= -Vs(~~(--oo,~)\5.19), and becomes zero when I= M, for any fixed 
value of the parameter n and for n= -2 when 1 is arbitrary. The dependence of CR on the 
mechanical properties of the matorial and prestressing is shown in Fig.4 by the solidlines. 

3. Let us consider in more detail the integral equation of the contact problem for a 
prestressed, physically non-linear elastic strip (2.3). Formally, the equation is completely 
the same as the integral equation of the contact problem of a linearly elastic strip, and 
differs from it only in the form of the function L(o) and the value of the dimensionless 
parameter 8. Analysis of expression (2.7) showed that the function L(O) hasallthecharacteristic 
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properties listed in /3/, namely 1) in the plane of the complex variable z= o-l- io, the 
function L(z)zl is even and meromorphic, and is real and regular when ox= 0; 2) limI,(z)z-I-'= 
x+x_4x++x_)>O as z- 0; 3) the following estimate holds on the real axis as Io~--+co: 

D A 

5 II) 

Fig.5 

L (w) = 10 I-1 [I -+ 0 (edq] Y=2(%+$%_)>0 

From this it follows that the asymptotic methods of "large" and "small" rt can be used to 
solve integral Eq.(2.?). 

Figure 5 shows the results of an investigation of Eq.(2.7) for a flat stamp 0 (2) =- 0) 
using the above methods. The results are shown in the form of the dependence of the magnitude 
of the impressing force, for a fixed depth of impression, on the relative layer thickness for 
materials with varying mechanical properties and conditions of prestressing (the solid lines 
refer to the case $=J,(Io~,~),lp== 0,n = 3, and the dashed lines to the case *=)12(10{, T), rp = k+, 
1 :- 1). 

The author thanks V.M. Aleksandrov for formulating the problem and for valuable comments. 
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